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Purpose: The generalizability and trustworthiness of deep learning (DL)–
based algorithms depend on the size and heterogeneity of training datasets.
However, because of patient privacy concerns and ethical and legal issues,
sharing medical images between different centers is restricted. Our objective
is to build a federatedDL-based framework for PET image segmentation uti-
lizing a multicentric dataset and to compare its performancewith the central-
ized DL approach.
Methods: PET images from 405 head and neck cancer patients from 9 dif-
ferent centers formed the basis of this study. All tumors were segmented
manually. PET images converted to SUV maps were resampled to isotropic
voxels (3 � 3 � 3 mm3) and then normalized. PET image subvolumes
(12� 12� 12 cm3) consisting of whole tumors and background were ana-
lyzed. Data from each center were divided into train/validation (80% of pa-
tients) and test sets (20% of patients). The modified R2U-Net was used as
core DL model. A parallel federated DL model was developed and com-
pared with the centralized approach where the data sets are pooled to one
server. Segmentation metrics, including Dice similarity and Jaccard coeffi-
cients, percent relative errors (RE%) of SUVpeak, SUVmean, SUVmedian,
SUVmax, metabolic tumor volume, and total lesion glycolysis were com-
puted and compared with manual delineations.
Results: The performance of the centralized versus federated DL methods was
nearly identical for segmentation metrics: Dice (0.84 ± 0.06 vs 0.84 ± 0.05) and
Jaccard (0.73 ± 0.08 vs 0.73 ± 0.07). For quantitative PET parameters, we ob-
tained comparable RE% for SUVmean (6.43% ± 4.72% vs 6.61% ± 5.42%),
metabolic tumor volume (12.2% ± 16.2% vs 12.1% ± 15.89%), and total lesion

glycolysis (6.93% ± 9.6% vs 7.07% ± 9.85%) and negligible RE% for SUVmax

and SUVpeak. No significant differences in performance (P > 0.05) between the
2 frameworks (centralized vs federated) were observed.
Conclusion: The developed federated DL model achieved comparable quan-
titative performance with respect to the centralized DL model. Federated DL
models could provide robust and generalizable segmentation, while address-
ing patient privacy and legal and ethical issues in clinical data sharing.

Key Words: distributed deep learning, federated learning, multicenter
studies, PET, segmentation

(Clin Nucl Med 2022;00: 00–00)

P ET is an established noninvasive imagingmodality capturing func-
tional and metabolic information of the underlying tissues at the

molecular level. 18F-FDG PET imaging plays a major role for im-
proved clinical diagnosis, evaluation of prognosis, treatment plan-
ning including external radiation therapy (RT), and for posttreat-
ment follow-up.1 Radiation therapy is a standard treatment modality
of head and neck cancer (HNC),2 and the precise delineation of tu-
mor boundaries is crucial as segmentation accuracy not only affects
survival of HNC patients but is also essential in avoiding irradiation
of organs at risk.3 A number of studies have demonstrated that the
ability of 18F-FDG PET to characterize tumor metabolism facili-
tates its segmentation for RT planning.4 Currently, tumor segmenta-
tion is performed manually by the radiation oncologist. This task,
however, is time-consuming and labor-intensive and also crucially
suffers from interobserver and intraobserver variability because of
the complex HN anatomy on the one hand and the required consider-
able operator experience on the other hand.5 However, even in experi-
enced hands, interobserver variability can be substantial. In a recent
study,6 the interobserver variability of PET/CT-based gross target vol-
ume (GTV) segmentation in HNC patients undergoing RT resulted
in a mean GTVoverlap, as reflected by the Dice similarity coefficient,
of only 69%, although 3 experienced radiation oncologists had manu-
ally segmented the tumors. To segment HNCs, data from 18F-FDG
PET and CT acquisitions are usually used.7 In this approach, it is as-
sumed that 18F-FDG tumor uptake and anatomic tumor boundaries
correspond on coregistered PET and CT images.8 However, anatomic
and metabolic tumor boundaries may not coincide because of PET/
CT mis-coregistration errors and peritumoral inflammation, which
may lead to overestimation of tumor volume on morphologic images.9

In addition, accurate and precise delineation of tumor contours
plays a critical role for the reliability of quantitative analysis of 18F-
FDG uptake, including texture analysis. Such analysis (referred to
as radiomics) can be utilized to evaluate tumor changes during treat-
ment and establish prognostic models for predicting survival and
treatment outcome.10 It has been shown that the variability of tumor
contouring can jeopardize the robustness and reproducibility of quan-
titative metrics including radiomics features extracted from PET im-
ages.10 Moreover, tumor segmentation has been recognized as a
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stumbling block and a time-consuming step in radiomics studies,11

hindering the utilization of large multicenter data sets, an essential
step for successful clinical implementation of texture analysis.12

Apart from the aforementioned reasons, newly developed RT
techniques and radiomics models based on PETalone, without rely-
ing on other imaging modalities, hold promise for fully automated
segmentations. Therefore, the development of accurate fully auto-
mated segmentation methods is highly desirable. Several artificial
intelligence (AI) techniques, especially deep learning (DL) algo-
rithms, have already been used for various tasks in nuclear medicine
image analysis, including classification, dosimetry, image-to-image
translation, and image segmentation.13–15 An array of DL techniques
have been developed for the task of medical image segmentation and
proven to produce promising results for different modalities, espe-
cially PET.16 Among the different AI techniques, DL-based methods
have gained special attention because of their ability of automatically
extracting high-throughput features and generating probability maps
to segment and delineate normal and abnormal tissues.17 In a PET
segmentation study by Czakon et al,18 3 different AI-based methods,
namely, a model based on spatial distance weighted fuzzy c-means,
another based on dictionary learning, and a DL approach, were com-
pared. The DL approach achieved the highest performance. Moreover,
the MICCAI (Medical Image Computing and Computer Assisted
Intervention)19 and HECKTOR (HEad and neCK TumOR)20 auto-
mated segmentation challenges, the best performing models, were all
DL-based. Nevertheless, only a limited number of studies have so far
investigated the potential of DL segmentation methods based solely
on PET.21 In a more recent study, 3 DL algorithms with a combina-
tion of 8 loss functions were assessed for HNC tumor segmentation
from PET images, reporting promising results.22 However, DL-
based algorithms are known to be data-hungry, and as such, their gen-
eralizability is largely dependent on the size and the heterogeneity of
the used datasets.

In a wide range of medical situations, this becomes a critical
challenge, because sharingmedical data between different centers is
limited because of concerns over patients’ privacy and ethical and
legal issues.23–25 To overcome this limitation, the concept of feder-
ated learning (FL) is being increasingly explored in the context of
medical data and more recently in medical imaging. The idea is to
build DL-based models and learning recipes to be applied on multi-
institutional data sets without sharing the data between the centers
to address patients’ privacy and data sharing issues.23–25

Traditionally, DLmodels are developed in a single center, where
the data owner trains the application-specific model using available lo-
cal training data sets. However, this approach has 2 major limitations.
First, the development of an accurate and robust DL model requires
massive data sets, which are unlikely to be obtained from a single cen-
ter. Second, data acquired in a single center may be homogeneous, re-
sulting in poor generalizability and poor performance on independent
unseen samples. To address these limitations, data owners (users) send
their data sets to a central server, having significant computational
power and storage capacity, to pool data for ameaningful model imple-
mentation. This approach is known as the centralized framework. In
the last decade, an abundant range of applications have been proposed
based on standalone and centralized frameworks. However, data sets
often contain sensitive information that data owners (users) may prefer
to keep private. Hence, sharing medical data between different centers
is often limited because of concerns regarding patient privacy and
ethical and legal issues.23–25

Privacy-preserving mechanisms can be utilized to ensure pri-
vacy of the data owners (users). Alternatively, we can train a central-
ized model in a decentralized fashion. The FL paradigm proposes
approaches to update such decentralized models.26–32 Alternatively,
models can be trained using distributed or decentralized ap-
proaches. In the distributed framework, first proposed by Lu et al28

andMcMahan et al,33 data owners collaborate by sharing their local
model’s updates to train a common model.29–32 In the FL frame-
work, data owners (users) train their networks locally and send the
trained model updates to a central server. Then, the server can, for in-
stance, iteratively aggregate the local updates into a global network. As
a result, FL allows training collaborative DL models using localized
data from different centers, addressing privacy concerns to some ex-
tent. Federated learning–based models have been developed for differ-
ent medical imaging tasks, including abnormality detection and classi-
fication,34 prognostic modeling,35 and segmentation.36,37 In the current
study, we have developed a federated DL-based framework for PET
image segmentation using multicenter data sets and compared its per-
formancewith a centralizedmodel, which uses data pooling in a central
server for model building.

PATIENTS AND METHODS

PET/CT Data Acquisition and Description
In this study, high-quality artifact-free anonymized PET im-

ages of 405 HNC patients from 9 different centers were used. The
numbers of included patients were 60, 75, 58, 22, 20, 68, 32, 41,
and 29 from centers 1 to 9, respectively. Data were acquired and re-
constructed using different scanners and protocols; the information
regarding data sets can be found in References 22,38–43. The data
from each center were divided into train/validation set (80% pa-
tients, 324 patients) and test set (20% patients, 81 patients).

Manual Image Segmentation and Preprocessing
Image quality of all PET images was first evaluated by an ex-

perienced nuclear medicine physician. Subsequently, manual seg-
mentation of primary tumorswas performed for each center on axial
slices, starting from initial segmentation provided by each center, by
an experienced nuclear medicine physician or in consensus by 2 ra-
diologists, depending on the center. The delineations were used as
standard of reference for evaluation. PET images were converted
to SUV maps. Because the data sets were acquired at different cen-
ters with different scanners, image acquisition protocols, and recon-
struction settings, PET images were interpolated to an isotropic
voxel of 3 � 3 � 3 mm3, which resulted in rotationally invariant
uniform (matrix size and voxel size) data sets. In addition, in order
to make the computations tractable, all PET images were cropped to
12� 12� 12-cm3 subvolumes (uniformmatrix size and voxel size)
including whole tumor and background. Cropped PET images were
normalized to the range [0,1]. These straightforward steps were
adopted for easy implementation and to ensure reproducibility of
image preprocessing in clinical setting.

Federated Learning Framework
Consider a centralized server that aims to train a DL model

consisting of d parameters based on data samples available atK data
centers (owners/users). The objective is tominimize some loss function

L : ; :ð Þ. Let x kð Þ
i ; y kð Þ

i

n oNk

i¼1
denote the set of Nk labeled training data

samples available at the kth data center (owner), where k ∈ {1,2,…,
K}. The vector x kð Þ

i represents the ith PET image at center k, where
i ∈ {1, 2, ..., Nk}, and y

kð Þ
i represents the corresponding label. The

goal of the FL model is to find the vector θ° satisfying:

θ� ¼ argmin
θ

F θð Þ≜
XK
k¼1

αk Fk θð Þ
 !

; 1ð Þ

where Fk(θ), k ∈ {1,…,K} are the local objective functions, and
αk ∈ {1,…,K} are nonnegative weighting coefficients satisfyingPK

k¼1αk ¼ 1. Let us consider the collection of centers (hospitals)
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to have a total of N =
PK

k¼1Nk data samples; then one can assign
αk= Nk / N. The local objective functions are defined as empirical
averages over the associated training sets as follows:

Fk θð Þ≜ 1

Nk

XNk

i¼1

L θ; x kð Þ
i ; y kð Þ

i

� �� �
: 2ð Þ

In our framework, each center (data owner) minimizes its empirical
loss function with respect to the local data samples, using the sto-
chastic gradient descent (SGD) algorithm. Let t denote the global it-
eration and suppose each data owner performs a τ − step local SGD,
for some τ ∈ ℕ. Upon receiving the global model parameter
θ(t) from the server, the jth step of the local SGD at data owner k,
k ∈ {1,2,…,K}, corresponds to the following update:

θ jþ1
k tð Þ ¼ θ j

k tð Þ − η j
k tð Þ∇Fk θ j

k tð Þ� �
; j∈ 1; 2;…; τf g; 3ð Þ

whereη j
k tð Þdenotes the learning rate, and the first local update is set

asθ1k tð Þ ¼ θ tð Þ. Depending on the strategy to update the parameters
of the global and local models, various techniques have been
proposed44–46 to optimize the communication efficiency compared
with the naive SGDmethod. We used federated averaging (FedAvg)
in our framework. The schematic description of the FL process is

presented in Figure 1. First, the global model developed by the
server distributes data through different centers (A). Next, the models
are trained separately in each center (B) using the local data set, and
finally, trained models from all centers are returned to the server to
aggregate and update the central global model (C). These steps are re-
peated until some convergence criteria are met, for example, until no
significant loss descend is observed. The model learns from the data
sets using SGD for all optimizations.22 Similar to previous studies,47–53

the FL process in this work was performed on a server with multiple
local graphics processing units (GPUs), where each local GPUwas con-
sidered as a different center.

Deep Neural Network
As for the DL architecture, we used a modified R2U-Net,54

which is composed of recurrent residual connections as well as
convolutional blocks (Fig. 1). The most established neural structure
for image segmentation in the medical community is U-Net, based
on which many further variations have been proposed. R2U-Net
builds on top of this by adding recurrence to the convolutional resid-
ual blocks, which helps the network to increase its effective capacity
without increasing the number of parameters. In fact, recurrence can
be thought of as the operation of unrolling a network block through

FIGURE 1. Federated learning flowchart. The global model generated by the server is distributed to different centers (A).Models
are trained separately in each center (B). Trained models from all centers are returned to the server to be aggregated to form a
new global model (C). Schematic of deep recurrent residual neural network (R2U-Net) (D).
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time to provide more effective depth. Moreover, R2U-Net uses fea-
ture accumulation, which helps extracting low-level features. We
used 3 down- and up-sampling levels with 16, 32, and 64 channels
in our R2U-Net structure, as well as 2 recurrent convolutional layers
with 2 iterations per down- and up-sampling, along with the batch
normalization layers. As for the activation function, we used the
standard ReLU, except for the sigmoid in the output layer. All
implementations were performed in TensorFlow.

Training
All evaluations and reports were performed for 81 patients

(20% of each center). All PET images were fed as input to the
R2UNet in both the FL and centralized frameworks to generate the
corresponding binary masks of tumors. We trained the DL model
with axial slices as 1-channel images with a batch size of 64.

Quantitative Evaluation
To evaluate the performance of the 2 models, standard seg-

mentation metrics, including the Dice similarity coefficient, Jaccard

similarity coefficient, false-negative rate, false-positive rate, volume
similarity, and mean and SD of surface distance were calculated
with respect to manual segmentations. In addition, clinical evaluation
of DL-guided segmentations using both centralized and FL frame-
works was assessed through a number of image-derived PET metrics,
including SUVpeak, SUVmean, SUVmedian, SUVmax, metabolic tumor
volume (MTV), and total lesion glycolysis (TLG). In addition, we ex-
tracted a number of shape radiomic features, including sphericity,
asphericity, elongation, and flatness using SERA package,55 which is
compliant with the Image Biomarker Standardization Initiative guide-
lines.56 We calculated the mean relative error (RE%) and the mean ab-
solute relative error (ARE%) with respect to manual segmentation.

Statistical Analysis
Descriptive statistics included mean ± SD and 95% confi-

dence interval (CI) for different image quantification metrics. The
Kolmogorov-Smirnov test showed that the data were not normally
distributed. Therefore, pairwise comparison between parameters
was performed using the nonparametric 2-sample Wilcoxon test

FIGURE 2. 3D views of PET segmentations obtained from manual (red), centralized learning (green), and federated learning
(blue) methods, on representative patients from different centers (cases 1 and 2 are from 2 centers).
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(Wilcoxon rank sum test or Mann-Whitney U test) with P < 0.05
defined as threshold for statistical significance.

RESULTS
Figure 2 illustrates the 3D-rendered volumes of segmented

GTVs, sampled from different clinical centers for manual, centralized,
and federated segmentation approaches. The model performance of
centralized (green) and federated DL algorithm (blue) is visually com-
pared against manual segmentation. Supplemental Figure 1 (http://
links.lww.com/CNM/A378) represents additional cases of segmented
GTVs categorized by clinical center.

Figure 3 presents a visual comparison between the 2 different
learning strategies against manual segmentation (ground truth) via
multiple 2D axial views of different lesions from each center. A mag-
nified version of the same GTVs is illustrated in Figure 4. In Supple-
mental Figures 2–10 (http://links.lww.com/CNM/A378), different cases
from various centers are shown, depicting the accuracy and complexity
of the segmentation task according to textural GTV characteristics.

In separate center-by-center analyses, strong consistency was
observed between the 2 approaches, in terms of quantitative image
segmentation performance metrics. In Figure 5, model performance

within centralized versus FL approaches is compared in terms of
Dice similarity coefficient (0.84 ± 0.06 vs 0.84 ± 0.05), Jaccard
similarity coefficient (0.73 ± 0.08 vs 0.73 ± 0.07), false-negative
(0.16 ± 0.12 vs 0.17 ± 0.11), false-positive (0.14 ± 0.1 vs
0.11 ± 0.1), mean surface distance (0.19 ± 0.08 vs 0.19 ± 0.07),
and SD surface distance (0.44 ± 0.12 vs 0.45 ± 0.14). Mann-
Whitney U statistical analysis showed no significant differences
(P > 0.05) between centralized compared with FL approach for al-
most all quantitative metrics. We provide additional details, includ-
ing mean ± SD, 95% CI, and P value tables in Supplemental Tables
1–3 (http://links.lww.com/CNM/A378), respectively.

In addition, through center-based analysis, we observed con-
sistency between centralized and FLmodels in terms of relative bias
from ground truth segmentation in SUVmean (6.43% ± 4.72% vs
6.61% ± 5.42%), MTV (12.23%–16.19% vs 12.1%–15.89%), and
TLG (6.93%–9.6% vs 7.07%–9.85%). For some indices, such as
SUVmax and SUVpeak, the difference between the prediction and
ground truth could be ignored. In the case of shape features, almost
the same consistency was observed between centralized versus FL
(elongation=5.5%–7.43%vs5.67%–8.19%and sphericity=3.39%–
4.6% vs 3.81%–5.35%). Table 1 summarizes the mean ± SD of RE%
and ARE% of quantitative PET metrics between centralized and FL

FIGURE 3. 2D views of segmentations obtained from manual (red), centralized learning (green), and federated learning (blue)
methods on representative patients from the 9 different centers.
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approaches compared with the ground truth using the center-based
approach. Center-based statistical analysis revealed that differences
between all derived quantitative metrics were not significant
(P > 0.05). Selected image-derived features (signal intensity features
and shape features) of the segmented volumes of the whole test set
are illustrated in Figure 6. Furthermore, theAREs of thesemetrics be-
tween centralized and FL models are summarized in Table 2, as cat-
egorized by center. Lower and upper bands of 95% CI are summa-
rized in Supplemental Tables 4 and 5 (http://links.lww.com/CNM/
A378) along with statistical analysis, in which no significant differ-
ences between the 2 approaches were observed (Supplemental Tables
6 and 7, http://links.lww.com/CNM/A378).

DISCUSSION
Accurate and reproducible tumor segmentation from noisy

PET images faces many challenges.57,58 Inherent limitations in PET
imaging, such as low spatial resolution, partial volume effect, high
noise characteristics, and motion artifacts, result in blurred bound-
aries between tumor and background. In addition, different shapes,
textures, and locations of tumors render the development of general-
ized segmentation methods difficult. Furthermore, the variability of
PET scanners, imaging protocols, and reconstruction/correction algo-
rithms challenges the reproducibility of segmentation results.9

Multiple computer-aided methods have been proposed for PET
image segmentation that successfully addressed the aforementioned
challenges to some extent.58 Conventional segmentation methods
range from simple algorithms, such as threshold-based,59 region-
growing, and active contours, to more sophisticated approaches
based on clustering and classification algorithms trained on PET fea-
tures, such as fuzzy locally adaptive Bayesian, atlas-based, fuzzy c-
mean iterative clustering and Gaussian mixture models. Although
these algorithms provided promising results, translation into the
clinic faced multiple impediments. Some techniques require manual
identification of the central tumor voxel or a bounding box encompassing

the entire tumor,60 some are limited by partial volume effect,61 and
some require additional tuning on different scanners.62

Comparedwith the aforementionedmethods, DL-basedmethods
have shown promising results. In the first MICCAI PET segmentation
challenge,19 the performance of conventional and machine learning
algorithms was evaluated on a dataset of 176 PET images consisting
of simulated, phantom, and clinical studies. Deep learning–based al-
gorithms outperformed other techniques, achieving a Dice score of
0.80. Huang et al63 applied a U-Net architecture for HNC segmenta-
tion from PET/CT images on dual-center datasets utilizing 22 patient
studies evaluated using one-leave-out scheme and reported a Dice co-
efficient of 0.73. Andrearczyk et al64 segmented HNC tumors using
the V-Net architecture and evaluated their model using one-center-
leave-out in a 4-center database and reported Dice coefficients of
0.58 and 0.60 for PETand fused PET/CT images, respectively. Leung
et al65 proposed a physics-guided tumor segmentation method from
PET images using DL. They simulated realistic tumors and trained the
model based on these data followed by fine-tuning on clinical datasets.
They reported a Dice coefficient of 0.87 (95% CI, 0.86–0.88) and
0.73 (95%CI, 0.71–0.76) for simulated and clinical studies, respectively.

In a more recent study, Shiri et al22 developed a fully automated
tumor segmentation from HNC PET studies using DL algorithms and
multicentric datasets. They evaluated 24 different models implemented
through the combination of 3 DL algorithms and 8 different loss func-
tions. Deep learning models were trained on 370 images and tested on
100 PET images on 12-cm3 subvolumes that included both tumor and
background. They reported a Dice coefficient (mean ± SD and 95%
CI) for Res-Net with cross-entropy loss (0.86 ± 0.05 and 0.85–0.87),
Dense-VNet with cross-entropy loss (0.85 ± 0.058 and 0.84–0.86),
andNN-UNet withDice plusXEnt (0.87 ± 0.05 and 0.86–0.88). There
were no statistically significant differences between the 3 models for
various quantitative segmentation metrics. In addition, they reported
anRE%<5% for SUVmax, SUVmean, and SUVmedian in NN-UNet with
Dice plus XEnt model.22

Despite the potential of DL-based segmentationmodels, their
performance depends highly on the specific datasets used for

FIGURE 4. Magnified 2D views of segmentations obtained from manual (red), centralized learning (green), and federated
learning (blue) methods on patients from the 9 different centers.
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training. These algorithms require large/heterogeneous data sets to
provide robust and generalizable models. Creating large data sets
for data-hungry DL models requires collaboration among different
centers.Meanwhile, owing to legal/ethical and privacy issues, direct
data sharing between centers is not always feasible. The FL frame-
work can address these challenges by providing decentralized train-
ing procedures for DLmodels. This approach preserves privacy and
paves the way to train DLmodels collaboratively on large multicen-
tric data sets without sharing data sets between centers.23–25

In the current study, we compared the performance of central-
ized and FL models for the segmentation of HNC PET images.
Overall, a high consistency was observed between centralized and
FL approaches in terms of quantitative image segmentation metrics,
including Dice coefficient (0.84 ± 0.06 vs 0.84 ± 0.05) and Jaccard
coefficient (0.73 ± 0.08 vs 0.73 ± 0.07). In terms of conventional
PET image-derived quantitative metrics, consistency between FL
versus centralized approach was confirmed with SUVmean (6.43% ±
4.72% vs 6.61% ± 5.42%) and TLG (6.93%–9.6% vs 7.07%–
9.85%). For SUVmax and SUVpeak, RE% and ARE% were almost
zero. Overall, statistical analysis showed no significant differences
(P > 0.05) between these 2 strategies for different quantitative met-
rics. Collaborative DL model training without sharing data sets be-

tween different hospitals and centers to preserve patients’ privacy
using FL has been reported in few studies.23–25 Dayan et al35 devel-
oped an FL-based model for oxygen requirements in COVID-19
patients using vital, laboratory, and chest x-ray images. They re-
ported 16% and 38% improvement in average area under the curve
and generalizability for FL-based models compared with center-
based models. Gawali et al66 reported an area under the receiver op-
erating characteristic curve/F1 score of 0.95/0.72 and 0.93/0.62
with centralized and FL models for chest x-ray classification.

In a recent study by Feki et al,53 FL-based models were eval-
uated for COVID-19 detection from chest x-ray images. They eval-
uated 2 different DL architectures for centralized and FL frame-
works with different settings and reported that the FL-based method
can achieve comparable results with respect to centralized methods
and remain robust in the presence of not independent and identically
distributed and unbalanced data. In another study by Lee et al,67 an
FL framework was tested for thyroid nodules malignancy classifica-
tion using ultrasound images. They enrolled 8457 ultrasounds im-
ages from 6 different centers and compared the performance of 5
different DL-based networks. They reported areas under the re-
ceiver operating characteristic curve of 78.88% to 87.56% and
82.61% to 91.57% for FL and centralized-based learning methods,

FIGURE 5. Comparison of the performance of the centralized versus federated learning frameworks in terms of quantitative metrics.
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respectively. It was concluded that FL-based techniques could po-
tentially achieve the performance of centralized methods in the clas-
sification of benign and malignant lesions from ultrasound images.
In Li et al,68 multisite functional MRI analysis was performed using
FL and domain adaptation for classification of autism spectrum dis-
orders among healthy control subjects using brain function connec-
tivity. To tackle the domain shift issue, they proposed 2 different
methods for FL model performance boosting and showed that FL
model performance could be improved by domain adaptation. The
proposedmethod could potentially be implemented in nuclear med-
icine FL studies for improving models’ performance.

In this work, we showed that building DL models from mul-
tiple decentralized data sets at multiple centers is possible via FL,
where the local data sets remain in the respective centers.69 Feder-
ated learning algorithms bear some inherent limitations. For in-
stance, curious servers may be able to infer local sensitive data sets
from trained models, via different types of attacks,70,71 such as
membership inference attacks72 and model inversion attack.73

Privacy-aware FL models have recently been introduced to address
these additional privacy challenges at the expense of additional
computational complexity and performance loss.36,74,75 Another is-
sue in FL would be malicious parties that could potentially perform
data poisoning attacks during the training process,76,77 that is, mod-
ifying the label of data and uploading random updates to the global
model.73,78 Two different categories of noise could arise during
training. First was the inherent noise present in the data sets (either
in PET images or segmentations) that could potentially cause the
learning process to diverge in local centers and affect the whole
learning process (in case of high magnitude of noise in the data that
the network could not handle). Second, in FL, data poisoning could
be induced by malicious parties performing data poisoning attacks
during the training process,76,77 that is, by modifying the labels of
the data or by uploading random updates to the global model.73,78

Another challenge in FL is how to establish harmony in data
preprocessing because it should be performed on data from different
centers acquired with different protocols and settings. In the present

study, all preprocessing was performed in a uniform manner, in-
cluding converting to SUV, cropping, and normalizing to provide
reproducibility across different centers. One main limitation of the
current study was performing all computations on a server with dif-
ferent GPUs simulating different nodes (local computer GPUs were
considered as different centers/hospitals) as performed in previous
FL studies.47–53 A number of challenges were linked to the training
of the data sets for implementation of the FL approach, such as local
computer capacity and communication between centers and local
sites. Further studies should be carried out involving real multiple
clinical centers (using one-center leave-out strategy) to tackle these
challenges, specifically the communication bottleneck. Another
limitation of this work is the lack of comparison of DL algorithms
with conventional segmentation techniques. Yet, the main aim of
the current study was the comparison of the FL approach with cen-
tralized training. In the current study, the data from each center were
randomly divided into train/validation (80% of patients) and test
sets (20% of patients) as a standard evaluation method owing to
the computational burden associated with alternative, more com-
plex data-splitting methods. Further studies should be performed
through cross-validation strategies (ie, 10-fold) to assess the effect
of permutations of data splitting on FL learning robustness com-
pared with centralized DL models.

CONCLUSION
We evaluated the performance of a federated DL framework

for PET image segmentation to enable robust decentralized learning
without directly sharing data among clinical centers. We compared
our proposed model with centralized models and achieved similar
performance for an array of image segmentation metrics and quan-
titative PET features. Federated learning–based models provide ro-
bust and generalizable segmentation models while addressing the
privacy concerns and legal and ethical issues in medical data shar-
ing among clinical centers.

FIGURE 6. Violin plots of RE% for quantitative PET metrics (SUVmean, MTV, and TLG) and radiomics shape features (sphericity,
elongation, and asphericity) for centralized versus federated learning models.
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